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Abstract — For the first time, an adjoint neural network
method is introduced for sensitivity analysis in neural-based
microwave modeling and design. Exact first and second order
sengitivities are systematically calculated for generic
microwave neural models including variety of knowledge
based neural models embedding microwave empirical
information. A new formulation allows the models to learn
both the input/output behavior of the modeling problem and
its derivative data simultaneously. Examples for passive and
active microwave modeling and simulation are presented.

|. INTRODUCTION

Neural networks have been recently recognized as a
useful vehicle for RF and microwave modeling and design
[1]. Neural networks can be trained from EM simulation or
measurement data and subsequently used during circuit
analysis and design. The models are fast and can represent
EM/physics behaviors it learnt which otherwise are
computationally expensive. Microwave researchers have
recently demonstrated this approach in a variety of
applications such as modeling and optimization of high-
speed VLSl interconnects [2], CPW circuits [3], spira
inductors [4] and microwave FETs and amplifiers [5]-[6].
Knowledge based approaches with microwave empirical
or equivalent circuit models embedded into the neural
network learning process have also been studied [1].

This paper addresses a new task in this area, that is,
neural based sensitivity analysis. Sensitivity information is
very important in circuit optimization and modeling [7].
For neural networks, sensitivity analysis has been studied,
for example, for multilayer perceptrons [8] and neural
networks with binary responses for signal processing
purposes [9]. However, to provide sensitivity information
in a generic neural model with microwave functions, and
to learn from sensitivity data remains an unsolved task.

For the first time, a general adjoint neural network
senditivity analysis technique is presented in this paper,
which allows exact sengitivity to be calculated in a genera
neural model accommodating microwave empirical
functions, equivalent circuit as well as conventional switch
type neurons in an arbitrary neural network structure.

Techniques for both first and second order derivative
calculations are derived. Using the second order derivative,
we are able to train a neural network model to learn not only
device input/output data but also the derivative information,
which is very useful in smultaneous DC/small-signal/large-
signal device modeling [10]. The proposed senstivity
analyss technique is applied to high-speed VLS
interconnect modeling, large-signal FET modeling and 3-
stage amplifier design examples.

I1. PROPOSED ADJOINT NEURAL NETWORK APPROACH

A. The Adjoint Sructure and Sensitivity Analysis

Two networks, one called the original neural network,
and the other defined as the adjoint neural network, are
utilized in the proposed sensitivity analysis technique.
Each network consists of neurons and connections
between neurons. Each neuron receives and processes
stimuli (inputs) from other neurons and/or external inputs,
and produces an output. Here we introduce a generic
framework in which microwave empirical and equivalent
models can be coherently represented in the neural
network structures, and connections between neurons can
be arbitrary allowing different types of microwave neural
structures to be included.

Suppose for neuron i, the output is z and the external
input is x. Let N be the total nhumber of neurons in the
original neural network and z= [z 2 ... z]". In order to
accommodate microwave empirical knowledge, we use a
notation fi(z, p;) to represent the processing function for
neuron i where p; could represent either the neuron
connection weights or parameters in the empirical equivaent
model. Assuming the neuron indices are numbered
consecutively starting from the input neurons, through
hidden neurons to the outputs neurons, the feedforward
calculation of the original model can be defined as

z =f(z,p)+Xx 1)
calculated sequentially fori =1, 2, ... N.
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Let 9 be the Kronecker symbol (1ifi =jand 0if i #j).
We introduce an adjoint neural model, which consists of N
adjoint neurons. Let Z j be defined as the output of the jth
adjoint neuron. The processing function for this adjoint
neuron isalinear function defined as

Z ﬁi +3, )

i= ]+1

where  0f; /azj , which could be derivatives from
microwave empirical functions, are the local derivatives of
original neuron functions. To perform “feedforward”
computation in the adjoint model, we first initialize the last
several adjoint neurons by Kronecker functions, e.g., z, =
ow, Where k indicates the output neuron for which
sengditivity is to be computed. Then we calculate (2)
backwards according to the neuron sequence j = N-1, N-2,

., 1. The first order derivatives of the outputs versus the
inputs of the original neural model is 0z/dx = Z, .

In order to train the original neural model to learn
input/output deriveative data, we train the adjoint neural
model, leading to the need of second order sensitivity
analysis. The derivatives required to train the adjoint
model is computed by,
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R
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where 0%/0z0p; represents 2™ order derivative information

in individual neurons, and 7 is solved from back-
propagation in the adjoint neural model according to the

neuron sequencej = 2,3, ... N by initializing %,= 44 and
~ 2 of, =
z = [z, +§ @)
57 2ag, B

B. Training

Let d and d' represent the training data for the origina
output z and its derivatives dz/dx, respectively. Let |, K
and S be the index sets of input and output neurons, and
samples in training data d, respectively. We formulate the
error function for training as,

E-—gsl le Zo—Gief 4w, Y [j:k (')k.sJ ] (5)

i0LK K

where subscriptsi, k and s (used for x, z, d and d’) indicate
input neuron i, output neuron k and sample s, respectively,

and wy, W, are the weighting parameters. During training,
both the original and the adjoint neural models share the
same set of parameters p, i = 1, 2, ..., N. Therefore
training one model will aso result in the other model
being updated. There are three types of trainings. (i) Train
origina neural model using input/output data d, and after
training, the outputs of adjoint mode automaticaly
becomes derivative of original input/output. (ii) Train
adjoint model only with derivative data dz/dx. The
origina model will then give original input/output (i.e., x-
2) relationship, which has the effect of providing
integration solution over derivative training data.  (iii)
Train both origina and adjoint models together to learn x-
z and dz/dx data, which will help the neural model to be
trained more accurately and robustly.

I11. EXAMPLES

A. Example 1

Fast and accurate sendgtivity analysis of coupled
transmission lines are important for high-speed VLSI
interconnect optimization and statistical design. This
example illustrates the proposed sensitivity technique for
an arbitrary neural network structure where microstrip
empirical formulas are used as part of a knowledge based
neural network structure shown in Fig. 1.

After training with accurate EM based microstrip data
(100 samples), we use the proposed method to provide
exact derivatives of electrical parameters of the
transmission line with respect to the physical-geometrical
parameters needed in VLS| interconnect optimization. The
sengitivity solution from the proposed method is verified
with brute-force perturbation in Table I. Without neural
model, such senstivity would have been computed by
perturbation in EM simulators. The computation time for
the proposed method compared to EM perturbation
solution is 3s versus 2660s for sensitivity analysis of 1000
microstrip models which are typically needed in
optimization of a network of VLSI interconnects.

TABLE
COMPARISON OF SENSITIVITY BETWEEN PERTURBATION
TECHNIQUE AND ADJOINT TECHNIQUE

Sensitivity Perturb_ation Adjo_int Difference
Technique |Technique (%)

dLio/dw; -0.1440 -0.1435 0.354
dLio/dw, 0.0620 0.0616 0.645
dLi2/ds -0.8462 -0.8514 0.610
dLi2/dh 0.5338 0.5337 0.018
dLio/d & -0.0010 -0.0010 0.001
dLio/dfreq -0.0037 -0.0037 0.001
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Fig. 1. Knowledge based coupled transmission line neural model
of mutua inductance (Ly,) for VLSI interconnect optimization.
wi, W, S, h, and & are conductor widths, spacing, substrate
thickness and dielectric constants, respectively.

B. Example 2

This example illustrates the integration effect of the
adjoint neural model. We first train only the adjoint neural
model to learn the nonlinear capacitor data, which is
generated from Agilent-ADS. After training the adjoint
model with 41 data samples, we then use the original
neural model without re-training (with internal parameters
updated according Section I1.B) as a nonlinear charge-
model (i.e., Q-model). The charge model is compared with
analytical integration of ADS capacitor formula (Fig. 2).
The good agreement in the figure verifies the integration
effect of training the adjoint neural model. This example
shows an interesting solution to one of the frequently
encountered obstacles in developing a charge model for
nonlinear capacitors required for harmonic balance
simulators with only capacitor data available.
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Fig. 2. Comparison of Q from adjoint neural model (o) with Q
from analytical integration (—).

C. Example 3

This example shows large-signal device modeling using
DC and small-signal training data. The model used is a
knowledge based approach where existing equivaent
circuit model is combined with neural net learning. In
practice, manually creating formulas for the nonlinear
current and charge sources in a FET model could be very
time-consuming. Here we use neural networks to
automatically learn the unknown relationship of gate-
source charge Qg and drain current |y as nonlinear
functions of gate and drain voltages. However we do not
have explicitly the charge data Qg and dynamic current
data l4 for training the model. The available training data
is the DC and bias-dependent S-parameters of the overall
FET, which in our example isgenerated using Agilent-

| DCand S parameter training data_|
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Fig. 3: Large-signa FET modeling with combined equivalent
circuit and adjoint neural networks trained by DC and bias-
dependent S-parameters.
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Fig.4: Comparison between S-parameters of the ADS Statz
model (— ) and our complete neural FET model (0), (A) at
two of the ninety bias points: Vg =3.26 V, Vg =-0.6 V and
Vg =0.26V, Vg =-0.6 V respectively.
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Fig. 5: The 3-stage amplifier where the FET models used are neural models trained from the proposed method following Fig. 3.

ADS with Statz Model. Therefore the neural network and
the rest of the FET equivalent circuit are combined into a
knowledge based model and they together are trained to
learn the training data, shown in Fig. 3. Notice that
learning S-parameters means learning the derivative
information of the large-signal model. After training, a
good agreement of small signal responses at al the 90
bias points between our neural model and those given by
the ADS solution is observed, as shownin Fig. 4.
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Fig. 6: Comparison of the amplifier simulation using the FET
model trained by our approach and that by origina Agilent-
ADS model: (a) Time domain amplifier input and outputs. (b)
Frequency domain harmonic solutions of the amplifier output.

We then used our complete knowledge based FET
neural model in a three-stage power amplifier shown in
Fig. 5 for large-signal simulation. The large-signal
response of the amplifier using our model agrees well

with that using origina ADS moded (Fig. 6). This
example demonstrates that the proposed method can be
used for efficient generation of nonlinear device models
for usein large-signal simulation and design.
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