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Abstract  — For the first time, an adjoint neural network 

method is introduced for sensitivity analysis in neural-based 
microwave modeling and design. Exact first and second order 
sensitivities are systematically calculated for generic 
microwave neural models including variety of knowledge 
based neural models embedding microwave empirical 
information. A new formulation allows the models to learn 
both the input/output behavior of the modeling problem and 
its derivative data simultaneously. Examples for passive and 
active microwave modeling and simulation are presented. 

I. INTRODUCTION 

Neural networks have been recently recognized as a 
useful vehicle for RF and microwave modeling and design 
[1]. Neural networks can be trained from EM simulation or 
measurement data and subsequently used during circuit 
analysis and design. The models are fast and can represent 
EM/physics behaviors it learnt which otherwise are 
computationally expensive. Microwave researchers have 
recently demonstrated this approach in a variety of 
applications such as modeling and optimization of high-
speed VLSI interconnects [2], CPW circuits [3], spiral 
inductors [4] and microwave FETs and amplifiers [5]-[6].  
Knowledge based approaches with microwave empirical 
or equivalent circuit models embedded into the neural 
network learning process have also been studied [1]. 

This paper addresses a new task in this area, that is, 
neural based sensitivity analysis. Sensitivity information is 
very important in circuit optimization and modeling [7]. 
For neural networks, sensitivity analysis has been studied, 
for example, for multilayer perceptrons [8] and neural 
networks with binary responses for signal processing 
purposes [9]. However, to provide sensitivity information 
in a generic neural model with microwave functions, and 
to learn from sensitivity data remains an unsolved task. 

For the first time, a general adjoint neural network 
sensitivity analysis technique is presented in this paper, 
which allows exact sensitivity to be calculated in a general 
neural model accommodating microwave empirical 
functions, equivalent circuit as well as conventional switch 
type neurons in an arbitrary neural network structure. 

Techniques for both first and second order derivative 
calculations are derived. Using the second order derivative, 
we are able to train a neural network model to learn not only 
device input/output data but also the derivative information, 
which is very useful in simultaneous DC/small-signal/large-
signal device modeling [10]. The proposed sensitivity 
analysis technique is applied to high-speed VLSI 
interconnect modeling, large-signal FET modeling and 3-
stage amplifier design examples.  

II. PROPOSED ADJOINT NEURAL NETWORK APPROACH 

A. The Adjoint Structure and Sensitivity Analysis 

Two networks, one called the original neural network, 
and the other defined as the adjoint neural network, are 
utilized in the proposed sensitivity analysis technique. 
Each network consists of neurons and connections 
between neurons. Each neuron receives and processes 
stimuli (inputs) from other neurons and/or external inputs, 
and produces an output. Here we introduce a generic 
framework in which microwave empirical and equivalent 
models can be coherently represented in the neural 
network structures, and connections between neurons can 
be arbitrary allowing different types of microwave neural 
structures to be included.  

 Suppose for neuron i, the output is zi and the external 
input is xi. Let N be the total number of neurons in the 
original neural network and z = [z1 z2 … zN]T. In order to 
accommodate microwave empirical knowledge, we use a 
notation fi(z, pi) to represent the processing function for 
neuron i where pi could represent either the neuron 
connection weights or parameters in the empirical equivalent 
model. Assuming the neuron indices are numbered 
consecutively starting from the input neurons, through 
hidden neurons to the outputs neurons, the feedforward 
calculation of the original model can be defined as 

iiii x  )  (fz += p,z                           (1) 

calculated sequentially for i = 1, 2, … N.  
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Let δij be the Kronecker symbol (1 if i = j and 0 if i ≠ j).  
We introduce an adjoint neural model, which consists of N 
adjoint neurons. Let jẑ be defined as the output of the jth 
adjoint neuron.  The processing function for this adjoint 
neuron is a linear function defined as 
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where ji zf ∂∂ , which could be derivatives from 
microwave empirical functions, are the local derivatives of 
original neuron functions. To perform “feedforward” 
computation in the adjoint model, we first initialize the last 
several adjoint neurons by Kronecker functions, e.g., Nẑ = 
δkN, where k indicates the output neuron for which 
sensitivity is to be computed. Then we calculate (2) 
backwards according to the neuron sequence j = N-1, N-2, 
…, 1. The first order derivatives of the outputs versus the 
inputs of the original neural model is ∂zk/∂xi = iẑ .  

In order to train the original neural model to learn 
input/output derivative data, we train the adjoint neural 
model, leading to the need of second order sensitivity 
analysis. The derivatives required to train the adjoint 
model is computed by, 
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where ∂2fi/∂zj∂pj represents 2nd order derivative information 
in individual neurons, and ẑ̂  is solved from back-
propagation in the adjoint neural model according to the 
neuron sequence j =  2,3, … N by initializing 1ẑ̂ = δk1 and 
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B. Training 

Let d and d’ represent the training data for the original 
output z and its derivatives dz/dx, respectively. Let I, K 
and S be the index sets of input and output neurons, and 
samples in training data d, respectively. We formulate the 
error function for training as, 
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where subscripts i, k and s (used for x, z, d and d’) indicate 
input neuron i, output neuron k and sample s, respectively, 

and w1, w2 are the weighting parameters.  During training, 
both the original and the adjoint neural models share the 
same set of parameters pi, i = 1, 2, …, N. Therefore 
training one model will also result in the other model 
being updated. There are three types of trainings. (i) Train 
original neural model using input/output data d, and after 
training, the outputs of adjoint model automatically 
becomes derivative of original input/output. (ii) Train 
adjoint model only with derivative data dz/dx.  The 
original model will then give original input/output (i.e., x-
z) relationship, which has the effect of providing 
integration solution over derivative training data.  (iii) 
Train both original and adjoint models together to learn x-
z and dz/dx data, which will help the neural model to be 
trained more accurately and robustly. 

III. EXAMPLES 

A. Example 1 
Fast and accurate sensitivity analysis of coupled 

transmission lines are important for high-speed VLSI 
interconnect optimization and statistical design. This 
example illustrates the proposed sensitivity technique for 
an arbitrary neural network structure where microstrip 
empirical formulas are used as part of a knowledge based 
neural network structure shown in Fig. 1.  

After training with accurate EM based microstrip data 
(100 samples), we use the proposed method to provide 
exact derivatives of electrical parameters of the 
transmission line with respect to the physical-geometrical 
parameters needed in VLSI interconnect optimization. The 
sensitivity solution from the proposed method is verified 
with brute-force perturbation in Table I. Without neural 
model, such sensitivity would have been computed by 
perturbation in EM simulators. The computation time for 
the proposed method compared to EM perturbation 
solution is 3s versus 2660s for sensitivity analysis of 1000 
microstrip models which are typically needed in 
optimization of a network of VLSI interconnects. 

 
TABLE I 

COMPARISON OF SENSITIVITY BETWEEN PERTURBATION 
TECHNIQUE AND ADJOINT TECHNIQUE  

Sensitivity Perturbation 
Technique 

Adjoint 
Technique 

Difference
(%) 

dL12/dw1 -0.1440 -0.1435 0.354 
dL12/dw2 0.0620 0.0616 0.645 
dL12/ds -0.8462 -0.8514 0.610 
dL12/dh 0.5338 0.5337 0.018 
dL12/d εr -0.0010 -0.0010 0.001 

dL12/dfreq -0.0037 -0.0037 0.001 
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Fig. 1. Knowledge based coupled transmission line neural model 
of mutual inductance (L12) for VLSI interconnect optimization. 
w1, w2, s, h, and εr are conductor widths, spacing, substrate 
thickness and dielectric constants, respectively. 

B. Example 2 

This example illustrates the integration effect of the 
adjoint neural model. We first train only the adjoint neural 
model to learn the nonlinear capacitor data, which is 
generated from Agilent-ADS. After training the adjoint 
model with 41 data samples, we then use the original 
neural model without re-training (with internal parameters 
updated according Section II.B) as a nonlinear charge-
model (i.e., Q-model). The charge model is compared with 
analytical integration of ADS capacitor formula (Fig. 2). 
The good agreement in the figure verifies the integration 
effect of training the adjoint neural model.  This example 
shows an interesting solution to one of the frequently 
encountered obstacles in developing a charge model for 
nonlinear capacitors required for harmonic balance 
simulators with only capacitor data available. 

 
 

 
 
 
 
 
 
 
 
 

Fig. 2. Comparison of Q from adjoint neural model (o) with Q 
from analytical integration (___). 

C. Example 3 

This example shows large-signal device modeling using 
DC and small-signal training data. The model used is a 
knowledge based approach where existing equivalent 
circuit model is combined with neural net learning. In 
practice, manually creating formulas for the nonlinear 
current and charge sources in a FET model could be very 
time-consuming. Here we use neural networks to 
automatically learn the unknown relationship of gate-
source charge Qgs and drain current Id as nonlinear 
functions of gate and drain voltages. However we do not 
have explicitly the charge data Qgs and dynamic current 
data Id for training the model. The available training data 
is the DC and bias-dependent S-parameters of the overall 
FET,  which  in  our  example  is generated using Agilent- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 3: Large-signal FET modeling with combined equivalent 
circuit and adjoint neural networks trained by DC and bias-
dependent S-parameters. 

 
 
 
 
 
 
 
 

 
 
 
 
Fig.4: Comparison between S-parameters of the ADS Statz 
model ( ___ ) and our complete neural FET model ( o ),   ( ∆ ) at 
two of  the ninety bias points : Vds  = 3.26 V, Vgs  = -0.6 V and  
Vds  = 0.26 V, Vgs  = -0.6 V respectively. 

-2

-1.5

-1

-0.5

0

0.5

-3.6 -2.6 -1.6 -0.6 0.4
Voltage (V)

Q
 (p

C
)

- 5                         5

  Id                 S11           S12           S21          S22 

S-Parameters Formula

 
 

  Vgs 
 

  Vds

  

S 

 D  G

gsv

ds

d

gs

d
d dv

di  
dv
di i

dsv

NN 

 

freq

DC and S parameter training data 

Ids 

Qgs 

gs

gs

dv
dq

qgs 

gsv

NN 

gs

gs

dv
dq

ds

d

dv
di

gs

d

dv
di

Microstrip 
Empirical 
Formulae 

 w1     w2      s       h     εεεεr     freq 

Input Layer

Output Layer 

Boundary Layer 

Region Layer 

Normalized 
Region Layer 

Normalized 
Knowledge Layer 

L12 

0-7803-6540-2/01/$10.00 (C) 2001 IEEE



 

 

 
 
 
 
 
 
 
 
 
 
 

ADS with Statz Model. Therefore the neural network and 
the rest of the FET equivalent circuit are combined into a 
knowledge based model and they together are trained to 
learn the training data, shown in Fig. 3. Notice that 
learning S-parameters means learning the derivative 
information of the large-signal model. After training, a 
good agreement of small signal responses at all the 90 
bias points between our neural model and those given by 
the ADS solution is observed, as shown in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 6: Comparison of the amplifier simulation using the FET 
model trained by our approach and that by original Agilent-
ADS model: (a) Time domain amplifier input and outputs.  (b) 
Frequency domain harmonic solutions of the amplifier output. 

 
We then used our complete knowledge based FET 

neural model in a three-stage power amplifier shown in 
Fig. 5 for large-signal simulation. The large-signal 
response of the amplifier using our model agrees well 

with that using original ADS model (Fig. 6). This 
example demonstrates that the proposed method can be 
used for efficient generation of nonlinear device models 
for use in large-signal simulation and design. 
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Fig. 5: The 3-stage amplifier where the FET models used are neural models trained from the proposed method following Fig. 3. 
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